259 Liquido in rotazione

Area riservata alla discussione dei problemi teorici di fisica
Rispondi
Ein Bonner
Messaggi: 6
Iscritto il: 13 feb 2021, 18:45

259 Liquido in rotazione

Messaggio da Ein Bonner » 24 mag 2021, 20:47

Un contenitore cilindro e' immerso in un campo di gravita' non uniforme:



dove e' una costante.
All'interno del cilindro c'e un liquido di densita uniforme . Il cilindro ruota con velocita angolare rispetto all'asse verticale . Indichiamo inoltre con la direzione radiale. A causa della rotazione, si osserva che dopo un certo punto la superficie libera (cioe la superficie di fluido a contatto con l'atmosfera) non e' piu piana.
Determinare l'equazione che descrive la superficie libera. Commentare il caso .

Luca Milanese
Messaggi: 337
Iscritto il: 13 giu 2019, 10:05
Località: Terracina

Re: 259 Liquido in rotazione

Messaggio da Luca Milanese » 26 mag 2021, 15:54

Abbiamo . La velocità di un elemento di fluido a distanza dall'asse è , la sua accelerazione è . In verticale si ha equilibrio dinamico, quindi vale la legge di Stevino .
In direzione radiale, su un elemento di fluido di volume e massa agisce una forza in orizzontale data dal gradiente di pressione in direzione radiale:

Perciò, dalla Seconda Legge di Newton:

Dalle due equazioni di sopra, integrando, si ottiene la pressione in ogni punto:

Dove è la pressione atmosferica e ho imposto che la superficie libera passi per il punto . L'equazione della superficie libera del fluido si ottiene cercando il luogo dei punti a pressione :

Nel caso , cioè per punti della superficie lontani da , si ottiene e dunque:

Dunque la superficie del liquido è approssimabile a quella di un paraboloide con concavità rivolta verso l'alto.
Valid Facts and Theoretical Understanding Generate Solutions to Hard Problems

Leo
Messaggi: 113
Iscritto il: 26 ott 2020, 12:04

Re: 259 Liquido in rotazione

Messaggio da Leo » 26 mag 2021, 17:39

Volevo solo osservare che penso si possa trovare la soluzione di Luca in maniera molto meno sofisticata ma più semplice imponendo, come si fa sempre con i liquidi in rotazione,che la superficie libera sia la rotazione completa attorno all'asse di una curva del piano (r,z) passante per (0,0) e luogo dei punti per cui la risultante della forza peso e della forza centrifuga sia ortogonale alla curva stessa. Considerando una particella di liquido sulla curva z(r) il suo equilibrio dinamico è assicurato se . Separando le variabili e integrando da 0 a r o a z si ottiene proprio . Con quello che poi segue nel caso particolare. :roll: :?:

Ein Bonner
Messaggi: 6
Iscritto il: 13 feb 2021, 18:45

Re: 259 Liquido in rotazione

Messaggio da Ein Bonner » 27 mag 2021, 9:35

Luca Milanese ha scritto:
26 mag 2021, 15:54
Abbiamo . La velocità di un elemento di fluido a distanza dall'asse è , la sua accelerazione è . In verticale si ha equilibrio dinamico, quindi vale la legge di Stevino .
In direzione radiale, su un elemento di fluido di volume e massa agisce una forza in orizzontale data dal gradiente di pressione in direzione radiale:

Perciò, dalla Seconda Legge di Newton:

Dalle due equazioni di sopra, integrando, si ottiene la pressione in ogni punto:

Dove è la pressione atmosferica e ho imposto che la superficie libera passi per il punto . L'equazione della superficie libera del fluido si ottiene cercando il luogo dei punti a pressione :

Nel caso , cioè per punti della superficie lontani da , si ottiene e dunque:

Dunque la superficie del liquido è approssimabile a quella di un paraboloide con concavità rivolta verso l'alto.
Esatto, puoi continure la staffetta.

Rispondi