Sns 1994-5

Area riservata alla discussione dei problemi teorici di fisica
Rispondi
.Ruben.
Messaggi: 84
Iscritto il: 22 set 2016, 15:17

Sns 1994-5

Messaggio da .Ruben. » 3 lug 2018, 13:39

Due cilindri uniformi ruotano indipendentemente intorno ai loro assi. Indichiamo con R_1,M_1 ed R_2,M_2 raggio e massa dei due cilindri. Supponiamo poi che i due assi di rotazione siano paralleli e che la rotazione avvenga nello stesso senso con velocità angolari ω_1 e ω_2 rispettivamente.
I due cilindri vengono quindi spostati fino a farli accostare e i loro assi sono mantenuti nella posizione schematizzata in figura. In questa posizione, essi sono liberi di ruotare intorno al proprio asse e rotolano senza strisciare lungo una tangente. Si calcoli la velocità angolare finale di ogni cilindro.

Aleksej99
Messaggi: 84
Iscritto il: 2 apr 2017, 19:53
Località: Rimini-Pisa

Re: Sns 1994-5

Messaggio da Aleksej99 » 5 lug 2018, 10:15

Non agendo forze esterne sul sistema il momento angolare totale si conserva e dunque dette e le velocità angolari finali dei due corpi si avrà



dalla condizione di non slittamento si ha che



Svolgendo diligentemente i calcoli e detti , si ottiene




Dudin
Messaggi: 49
Iscritto il: 30 ago 2017, 21:10

Re: Sns 1994-5

Messaggio da Dudin » 5 lug 2018, 13:30

Correggetemi se sbaglio ma secondo me il momento angolare non si conserva e bisogna sfruttare che:
e che
da cui

Dudin
Messaggi: 49
Iscritto il: 30 ago 2017, 21:10

Re: Sns 1994-5

Messaggio da Dudin » 5 lug 2018, 13:31

per il resto direi che la mia soluzione e' identica ma il risultato esce leggermente diverso

.Ruben.
Messaggi: 84
Iscritto il: 22 set 2016, 15:17

Re: Sns 1994-5

Messaggio da .Ruben. » 6 lug 2018, 8:29

Ecco é come la mia.
Ora c'è un problema, i cilindri per non slittare alla fine devono muoversi in versi opposti, quindi le velocitá angolari finali devono avere segni diversi. Ma, se provi a farlo, ottieni un meno orrendo a denominatore

nicarepo
Messaggi: 89
Iscritto il: 11 lug 2018, 10:21

Re: Sns 1994-5

Messaggio da nicarepo » 13 lug 2018, 16:30

Il dubbio è ingiustificato in quanto la risposta proposta sopra è evidentemente corretta. Nonostante ciò ad essere rigorosi si dovrebbe fare la seguente considerazione.

Supponiamo che i momenti di inerzia dei due cilindri siano diversi e che inizialmente ruotino nello stesso senso. Dopo il contatto (senza strisciamento) uno dei due cilindri inverte la rotazione, affinché la velocità tangenziale nel punto di contatto sia uguale in modulo e verso per entrambi i corpi.

A questo punto la conservazione si può scrivere così:





Da cui le formule trovate in precedenza (con )

.Ruben.
Messaggi: 84
Iscritto il: 22 set 2016, 15:17

Re: Sns 1994-5

Messaggio da .Ruben. » 14 lug 2018, 12:25

Continuo a non essere d'accordo.
Scriviamolo coi vettori e poi con i moduli:
Il momento angolare (diretto lungo l'asse verticale) all'inizio vale: .
Alla fine (supponendo che il disco col secondo indice inverta la rotazione) il momento angolare vale:
.
Prendendo i moduli (ossia moltiplicando scalarmente per il versore verticale nella direzione positiva): .
A questo punto il modulo della velocità nel punto di contatto vale: da cui: . Il problema di segno rimane (se i dischi sono identici si ha una singolarità).

Altro ragionamento (SUPPONENDO I DISCHI IDENTICI):

Siano i vettori che collegano i centri di massa dei dischi al punto di contatto: ovviamente .
La velocità nel punto di contatto vale: , da cui: (e si ha ancora qualcosa di assurdo).

Avancini
Messaggi: 4
Iscritto il: 11 lug 2018, 14:00

Re: Sns 1994-5

Messaggio da Avancini » 16 lug 2018, 1:44

xyz
Ultima modifica di Avancini il 5 ott 2018, 10:16, modificato 2 volte in totale.

.Ruben.
Messaggi: 84
Iscritto il: 22 set 2016, 15:17

Re: Sns 1994-5

Messaggio da .Ruben. » 16 lug 2018, 6:05

Se mi dici che N invece di una forza é un impulso, allora finalmente mi trovo.

Rispondi