154. Camini cadenti

Area riservata alla discussione dei problemi teorici di fisica
Rispondi
Marcus
Messaggi: 10
Iscritto il: 29 ago 2017, 15:03
Località: Roma

154. Camini cadenti

Messaggio da Marcus » 28 giu 2018, 21:08

Un camino, di lunghezza e larghezza tali che , inizialmente dritto, viene spinto leggermente e inizia a cadere, mantenendo il contatto col terreno. Trova la distanza dalla base del punto in cui si romperà con più facilità.

Aleksej99
Messaggi: 84
Iscritto il: 2 apr 2017, 19:53
Località: Rimini-Pisa

Re: 154. Camini cadenti

Messaggio da Aleksej99 » 2 lug 2018, 14:06

Possibile sia nel punto ad altezza :?:

edit: O vicinissimo alla base :oops:

Marcus
Messaggi: 10
Iscritto il: 29 ago 2017, 15:03
Località: Roma

Re: 154. Camini cadenti

Messaggio da Marcus » 2 lug 2018, 14:24

Suppongo che con tu abbia equivalentemente indicato e con l'altezza del punto di rottura dalla base. In verità dovrebbe venire ...

Controlla se tipo hai considerato l'altezza dalla punta o cose del genere. Altrimenti potrei immaginare che tu abbia fatto il problema imputando la rottura ad una forza tangenziale (cosa che fornisce come risultato quel ). In realtà si può dimostrare che questa forza tangenziale è molto minore della tensione radiale lungo la sbarra, ed è dunque questa forza che causa la rottura.

Dato che ci sono metto anche un hint di modellizzazione: si provi a considerare il camino come due blocchi di altezza e , dove è l'altezza del punto di rottura dalla base, uniti da due aste ideali.

Aleksej99
Messaggi: 84
Iscritto il: 2 apr 2017, 19:53
Località: Rimini-Pisa

Re: 154. Camini cadenti

Messaggio da Aleksej99 » 2 lug 2018, 14:36

Io partendo dall'idea del tuo hint avevo trovato che le due forze rispettivamente tangenziale e radiale sono ;





La prima che era quella che avevo preso in considerazione io, la seconda è la trasversale che dici tu ma non mi sembra avere un massimo per .
Sono abbastanza sicuro delle formule, se vuoi posto anche i conti, magari non ho usato qualche approssimazione ...

edit: ho corretto la forza radiale, che varia a seconda se la si consideri a sinistra o destra ... nelle approssimazioni del testo è significativo nella forza radiale solo il secondo addendo che ha in effetti un massimo per
Ultima modifica di Aleksej99 il 2 lug 2018, 17:33, modificato 1 volta in totale.

carlaaf
Messaggi: 14
Iscritto il: 29 ago 2017, 15:18

Re: 154. Camini cadenti

Messaggio da carlaaf » 2 lug 2018, 15:13

Aleksej potresti postare i conti? A me viene ma con equazioni diverse dalle tue. La prima differisce solo di coefficienti mi pare, ma la seconda proprio di forma. In particolare sfruttando l'ipotesi mi si semplifica molto.

Aleksej99
Messaggi: 84
Iscritto il: 2 apr 2017, 19:53
Località: Rimini-Pisa

Re: 154. Camini cadenti

Messaggio da Aleksej99 » 2 lug 2018, 17:34

Ho corretto il post precedente ed ora ottengo il risultato giusto, quando posso posto il procedimento ma puoi farlo prima tu e mandare avanti la staffetta ...

carlaaf
Messaggi: 14
Iscritto il: 29 ago 2017, 15:18

Re: 154. Camini cadenti

Messaggio da carlaaf » 5 lug 2018, 19:11

Posto la mia soluzione anche se avviso che non ho ancora in mente un problema 155, quindi in caso tu lo avessi ti lascio senza problemi il testimone!

Come diceva Marcus, consideriamo il camino spezzato in due parti una di lunghezza e un'altra . Sulla parte agiscono la forza peso relativa a quella parte e le due tensioni sulle aste ideali che possiamo scomporre in due componenti radiali ( e e due tangenziali ( e ).

Calcoliamo intanto velocità angolare e accelerazione angolare di tutto il camino in funzione di .
Dal momento della forza peso e conservazione dell'energia otteniamo:
e
Scriviamo quindi le forze e il momento sul pezzo considerando che il suo cdm si muove lungo una circonferenza di raggio :



Dove è la massa solo della parte lunga ed è pari a .
Sostituendo le espressioni di , e alle tre equazioni di sopra si ottiene:



Risolvendo si ha:


Andando a sostituire nella terza si ottiene:

Nelle ipotesi del problema l'ultimo termine della somma è trascurabile. Quindi si ha:

E quest'ultima ha proprio un massimo per !

Sperando che non ci siano typo qua e la, dovrebbe essere tutto!

Marcus
Messaggi: 10
Iscritto il: 29 ago 2017, 15:03
Località: Roma

Re: 154. Camini cadenti

Messaggio da Marcus » 8 lug 2018, 11:07

Va bene, che si vada col prossimo! :D

Rispondi