La ricerca ha trovato 62 risultati

da matteofisica
14 ago 2021, 22:13
Forum: Problemi teorici
Argomento: 267. Infinitupolo
Risposte: 15
Visite : 723

Re: 267. Infinitupolo

Perfetto, adesso ho capito meglio! :D Quando vuoi, puoi postare il prossimo problema! ;)
da matteofisica
14 ago 2021, 15:22
Forum: Problemi teorici
Argomento: 267. Infinitupolo
Risposte: 15
Visite : 723

Re: 267. Infinitupolo

Il ragionamento mi sembra corretto, tuttavia potresti giustificare meglio perché sommi da -x*+1 a infinito? Forse non ho capito io a causa della mia scarsa conoscenza delle serie... :roll: Comunque una volta sistemato questo puoi andare con il 268! :D
da matteofisica
11 ago 2021, 11:37
Forum: Problemi teorici
Argomento: 267. Infinitupolo
Risposte: 15
Visite : 723

Re: 267. Infinitupolo

Esatto, pensavo proprio al cambio degli estremi di integrazione. Però se hai un altro metodo aspetto con interesse di vederlo! :D
da matteofisica
11 ago 2021, 9:31
Forum: Problemi teorici
Argomento: 267. Infinitupolo
Risposte: 15
Visite : 723

Re: 267. Infinitupolo

Non saprei... noi conosciamo il risultato della serie \sum_{i=1}^{\infty}i^{-4}=\frac{\pi ^4}{90} . Non si potrebbe operare la sostituzione i=x+2nL e cambiare gli indici della serie come si fa con gli integrali? In questo modo troveremmo (?) un risultato indipendente da n per poi elidere le potenze ...
da matteofisica
10 ago 2021, 15:36
Forum: Problemi teorici
Argomento: 267. Infinitupolo
Risposte: 15
Visite : 723

Re: 267. Infinitupolo

Il primo e il secondo punto vanno sicuramente bene. Per quanto riguarda il terzo, potresti scrivere i calcoli più esplicitamente? In realtà, il tuo risultato non mi sembra così inverosimile: nel momento in cui trascuri le potenze di L da 2 in su già dal secondo dipolo potrebbe darsi che i contributi...
da matteofisica
8 ago 2021, 15:15
Forum: Problemi teorici
Argomento: 267. Infinitupolo
Risposte: 15
Visite : 723

267. Infinitupolo

* Le prime due domande sono tratte dall'Halliday - Fisica 2. La terza rappresenta un tentativo di generalizzare la situazione * Abbiamo un dipolo di cariche elettriche posto lungo l'asse y con il centro di massa nell'origine degli assi. Le cariche elettriche valgono +e,-e e sono distanziate tra loro...
da matteofisica
7 ago 2021, 12:07
Forum: Problemi teorici
Argomento: 266-la goccia si stacca dalla ruota
Risposte: 16
Visite : 723

Re: 266-la goccia si stacca dalla ruota

Perfetto! Allora appena ho tempo provo a risolverlo nell'altro sistema di riferimento e domani posto il 267! :D

P.S. Posso chiederti da dove è tratto questo problema?
da matteofisica
6 ago 2021, 16:24
Forum: Problemi teorici
Argomento: 266-la goccia si stacca dalla ruota
Risposte: 16
Visite : 723

Re: 266-la goccia si stacca dalla ruota

Mi correggo: basta guardare alla circonferenza goniometrica per comprendere i segni giusti e poi SOSTITUIRE nelle relazioni a cui mi riferisco. Il caldo fa brutti scherzi! :D
da matteofisica
6 ago 2021, 16:04
Forum: Problemi teorici
Argomento: 266-la goccia si stacca dalla ruota
Risposte: 16
Visite : 723

Re: 266-la goccia si stacca dalla ruota

Intanto risolvo il secondo punto: dalla relazione tan\alpha=\Omega t , sostituendo l'espressione di t trovata nel post precedente, si ottiene \alpha=tan^{-1}\left ( \frac{2\Omega}{g}\sqrt{R(g+\Omega^2R)} \right ) . Per quanto riguarda il mio errore concettuale: per giustificare il fatto che il risul...