SGSS 2017-2 Asta che scivola

Area riservata alla discussione dei problemi teorici di fisica
arna1998
Messaggi: 212
Iscritto il: 10 apr 2014, 22:54
Località: Pisa/Cantù

SGSS 2017-2 Asta che scivola

Messaggio da arna1998 » 14 set 2017, 16:55

Un'asta di estremi A e B lunga è posta verticalmente in modo che l'estremo B sia appoggiato al pavimento, mentre A sia a contatto con la parete. L'asta inizia a scivolare con velocità iniziale trascurabile in modo che B si muova a contatto con il pavimento. Trovare a che altezza e con velocità orizzontale del centro di massa il punto A perde il contatto con la parete.

Vinci
Messaggi: 29
Iscritto il: 4 set 2017, 9:49

Re: SGSS 2017-2 Asta che scivola

Messaggio da Vinci » 15 set 2017, 13:20

Gli attriti sono trascurabili?

arna1998
Messaggi: 212
Iscritto il: 10 apr 2014, 22:54
Località: Pisa/Cantù

Re: SGSS 2017-2 Asta che scivola

Messaggio da arna1998 » 15 set 2017, 17:23

Si :)

carol
Messaggi: 121
Iscritto il: 2 set 2017, 17:37

Re: SGSS 2017-2 Asta che scivola

Messaggio da carol » 16 set 2017, 11:42

Se non sbaglio, l'attrito non c'è ne' sulla parete ne' sul pavimento sennò non si muoverebbe. Inoltre sempre se non ho sbagliato i conti perchè ho preso forse una strada complicata a me risulterebbe che si stacca quando l'angolo con la verticale è 60° e quindi l'altezza è L/2. La velocità orizzontale del CM mi risulterebbe senza Latex :roll: (3/4)L.radice di (g/L) :?: :?: :oops:

arna1998
Messaggi: 212
Iscritto il: 10 apr 2014, 22:54
Località: Pisa/Cantù

Re: SGSS 2017-2 Asta che scivola

Messaggio da arna1998 » 16 set 2017, 20:22

Immagino che per la velocità ci vada al posto di , perché altrimenti non torna dimensionalmente... comunque i risultati non mi tornano entrambi :?
Prova comunque a postare la strada che hai seguito :)

Vinci
Messaggi: 29
Iscritto il: 4 set 2017, 9:49

Re: SGSS 2017-2 Asta che scivola

Messaggio da Vinci » 16 set 2017, 21:56

Credo che lui volesse scrivere , che si trova dimensionalmente, e portando la nella radice diventa quello che dici tu.
In ogni caso, qualche hint per farlo?

Marcus
Messaggi: 4
Iscritto il: 29 ago 2017, 15:03
Località: Roma

Re: SGSS 2017-2 Asta che scivola

Messaggio da Marcus » 16 set 2017, 23:19

Credo che la prima idea che convenga avere (e credo sia anche la meno standard) è sfruttare il fatto che il centro di massa dell'asta si muove su una circonferenza fintanto che i suoi estremi sono a contatto coi muri.

arna1998
Messaggi: 212
Iscritto il: 10 apr 2014, 22:54
Località: Pisa/Cantù

Re: SGSS 2017-2 Asta che scivola

Messaggio da arna1998 » 17 set 2017, 9:25

Vinci ha scritto:
16 set 2017, 21:56
Credo che lui volesse scrivere , che si trova dimensionalmente, e portando la nella radice diventa quello che dici tu.
Ops, avevo letto male e mi ero perso la L... :roll:

L'idea di Marcus è giusta e probabilmente anche la più veloce, alternativamente si può usare il procedimento più classico di scomporre il moto in una traslazione più una rotazione intorno al cdm ;)

carol
Messaggi: 121
Iscritto il: 2 set 2017, 17:37

Re: SGSS 2017-2 Asta che scivola

Messaggio da carol » 17 set 2017, 11:41

Ho trovato le coordinate del baricentro in funzione dell'angolo formato con la verticale, poi ho derivato due volte ascissa e ordinata. Ho impostato le eq. della dinamica su x e y in funzione delle reazioni perp. alla parete e al piano e la rotazione attorno al baricentro con momento di inerzia e reazioni. Per il distacco ho imposto che si annullasse l'acc. CM rispetto a x ottenendo una relazione fra velocità angolare al quadrato e accelerazione angolare. Un'altra relazione fra queste l'ho trovata integrando con un trucco l'eq. della rotazione. Con queste ho trovato i risultati. Senza Latex dovete avere pazienza con i miei discorsi retorici poco chiari. :?: :roll:

Vinci
Messaggi: 29
Iscritto il: 4 set 2017, 9:49

Re: SGSS 2017-2 Asta che scivola

Messaggio da Vinci » 17 set 2017, 18:10

Marcus ha scritto:
16 set 2017, 23:19
Credo che la prima idea che convenga avere (e credo sia anche la meno standard) è sfruttare il fatto che il centro di massa dell'asta si muove su una circonferenza fintanto che i suoi estremi sono a contatto coi muri.
E' perchè, in un sistema di riferimento che ha per assi le pareti dei muri viste lateralmente, si ha per il teorema di Pitagora che ???

Rispondi